
Top-Down and Bottom-up Cues for Scene Text Recognition

Anand Mishra1 Karteek Alahari2 C. V. Jawahar1

1 CVIT, IIIT Hyderabad, India 2 INRIA - WILLOW / École Normale Supérieure, Paris, France

Abstract

Scene text recognition has gained significant attention
from the computer vision community in recent years. Rec-
ognizing such text is a challenging problem, even more so
than the recognition of scanned documents. In this work,
we focus on the problem of recognizing text extracted from
street images. We present a framework that exploits both
bottom-up and top-down cues. The bottom-up cues are de-
rived from individual character detections from the image.
We build a Conditional Random Field model on these de-
tections to jointly model the strength of the detections and
the interactions between them. We impose top-down cues
obtained from a lexicon-based prior, i.e. language statis-
tics, on the model. The optimal word represented by the text
image is obtained by minimizing the energy function corre-
sponding to the random field model.

We show significant improvements in accuracies on two
challenging public datasets, namely Street View Text (over
15%) and ICDAR 2003 (nearly 10%).

1. Introduction

The problem of understanding scenes semantically has
been one of the challenging goals in computer vision for
many decades. It has gained considerable attention over
the past few years, in particular, in the context of street
scenes [3, 20]. This problem has manifested itself in various
forms, namely, object detection [10, 13], object recognition
and segmentation [22, 25]. There have also been significant
attempts at addressing all these tasks jointly [14, 16, 20].
Although these approaches interpret most of the scene suc-
cessfully, regions containing text tend to be ignored. As an
example, consider an image of a typical street scene taken
from Google Street View in Figure 1. One of the first things
we notice in this scene is the sign board and the text it con-
tains. However, popular recognition methods ignore the
text, and identify other objects such as car, person, tree, re-
gions such as road, sky. The importance of text in images
is also highlighted in the experimental study conducted by
Judd et al. [17]. They found that viewers fixate on text when

Figure 1: A typical street scene image taken from Google
Street View [29]. It contains very prominent sign boards
(with text) on the building and its windows. It also contains
objects such as car, person, tree, and regions such as road,
sky. Many scene understanding methods recognize these
objects and regions in the image successfully, but tend to
ignore the text on the sign board, which contains rich, useful
information. Our goal is to fill-in this gap in understanding
the scene.

shown images containing text and other objects. This is fur-
ther evidence that text recognition forms a useful compo-
nent of the scene understanding problem.

Given the rapid growth of camera-based applications
readily available on mobile phones, understanding scene
text is more important than ever. One could, for instance,
foresee an application to answer questions such as, “What
does this sign say?”. This is related to the problem of Opti-
cal Character Recognition (OCR), which has a long history
in the computer vision community. However, the success
of OCR systems is largely restricted to text from scanned
documents. Scene text exhibits a large variability in ap-
pearances, as shown in Figures 1 and 2, and can prove to be
challenging even for the state-of-the-art OCR methods.

A few recent works have explored the problem of de-
tecting and/or recognizing text in scenes [4, 6, 7, 11, 23,



Figure 2: Scene text often contains examples that have a large variety of appearances. Here we show a few sample images
from the SVT [30] and ICDAR [1] datasets, with issues such as, very different fonts, shadows, low resolution, occlusions.
These images are much more complex than the ones seen in typical OCR datasets. Standard off-the-shelf OCRs perform very
poorly on these datasets [23, 29].

26, 29, 30, 31]. Chen and Yuille [6] and later, Epshtein et
al. [11] have addressed the problem of detecting text in nat-
ural scenes. These two methods achieve significant detec-
tion results, but rely on an off-the-shelf OCR for subsequent
recognition. Thus, they are not directly applicable for the
challenging datasets we consider. De Campos et al. [9] pro-
posed a method for recognizing cropped scene text char-
acters. Although character recognition forms an essential
component of text understanding, extending this framework
to recognize words is not trivial. Weinman et al. [31] and
Smith et al. [26] showed impressive scene text recognition
results using similarity constraints and language statistics,
but on a simpler dataset. It consists of “roughly fronto-
parallel” pictures of signs [31], which are quite similar to
those found in a traditional OCR setting. In contrast, we
show results on a more challenging street view dataset [29],
where the words vary in appearance significantly. Further-
more, we evaluate our approach on over 1000 words com-
pared to 215 words in [26, 31].

The proposed approach is more closely related to those
in [23, 29, 30], which address the problem of simultane-
ously localizing and recognizing words. On one hand, these
methods localize text with a significant accuracy, but on the
other hand, their recognition results leave a lot to be desired.
Since words in the scene text dataset have been localized
with a good accuracy, we focus on the problem of recogniz-
ing words, given their location. This is commonly referred
to as the cropped word recognition problem. Note that the
challenges of this task are evident from the best published
accuracy of only 56% on the scene text dataset [29]. The
probabilistic approach we propose in this paper achieves an
accuracy of over 73% under identical experimental settings.

Our method is inspired by the many advancements made
in the object detection and recognition problems [8, 10, 13,
25]. We present a framework that exploits both bottom-up
and top-down cues. The bottom-up cues are derived from
individual character detections from the image. Naturally,
these windows contain true as well as false positive detec-
tions of characters. We build a Conditional Random Field
(CRF) model [21] on these detections to determine not only
the true positive detections, but also what word they rep-

resent jointly. We impose top-down cues obtained from a
lexicon-based prior, i.e. language statistics, on the model.
In addition to disambiguating between characters, this prior
also helps us in recognizing words.

The remainder of the paper is organized as follows. In
Section 2 we present our character detection method. Our
framework to build the random field model with a top-down
lexicon-based prior on these detections is described in Sec-
tion 3. We provide results on two public datasets and com-
pare our method to related work in Section 4. Implemen-
tation details are also given in this section. We then make
concluding remarks in Section 5.

2. Character Detection

The first step in our approach is to detect potential loca-
tions of characters in a word image. We propose a sliding
window based approach to achieve this.

2.1. Sliding Window Detection

Sliding window based detectors have been very suc-
cessful for challenging tasks, such as face [28] and pedes-
trian [8] detection. Although character detection is simi-
lar to such problems, it has its unique challenges. Firstly,
there is the issue of dealing with a large number of cat-
egories (62 in all). Secondly, there is a large amount of
inter-character and intra-character confusion, as illustrated
in Figure 3. When a window contains parts of two char-
acters next to each other, it may have a very similar ap-
pearance to another character. In Figure 3(a), the window
containing parts of the characters ‘o’ can be confused with
‘x’. Furthermore, a part of one character can have the same
appearance as that of another. In Figure 3(b), a part of the
character ‘B’ can be confused with ‘E’. We have adopted an
additional pruning stage to overcome some of these issues.

We consider windows at multiple scales and spatial lo-
cations. The location of the ith window, li, is given by its
center and size. The set K = {c1, c2, ..., ck}, denotes the set
of character classes in the dataset, e.g. k = 62 for English
characters and digits. Let φi denote the features extracted
from a window location li. Given the window li, we com-
pute the likelihood, p(ci|φi), of it taking a label ci for all the



(a) (b)

Figure 3: Typical challenges in multi-class character de-
tection. (a) Inter-character confusion: A window contain-
ing parts of the two o’s is falsely detected as x. (b) Intra-
character confusion: A window containing a part of the
character B is recognized as E.

classes in K. In our implementation, we used Histogram
of Gradient (HOG) features [8] for φi, and the likelihoods
p(·) were learnt using a multi-class Support Vector Machine
(SVM) [5]. Details of the training procedure are provided in
Section 4.2.

This basic sliding window detection approach produces
many potential character windows, but not all of them are
useful for recognizing words. We discard some of the weak
detection windows using the following pruning method.

2.2. Pruning Windows

For every potential character window, we compute a
score based on: (i) classifier confidence; and (ii) a measure
of the aspect ratio of the character detected and the aspect
ratio learnt for that character from training data. The intu-
ition behind this score is that, a strong character window
candidate should have a high classifier confidence score,
and must fall within some range of sizes observed in the
training data. For a window li with an aspect ratio ai, let
cj denote the character with the best classifier confidence
value given by Sij . The mean aspect ratio (computed from
training data) for the character cj is denoted by μaj . We
define a goodness score (GS) for the window li as:

GS(li) = Sij exp

(
− (μaj − ai)2

2σ2
aj

)
, (1)

where σaj is the variance of the aspect ratio for character
class cj in the training data. Note that the aspect ratio statis-
tics are character-specific. A low goodness score indicates
a weak detection, and is removed from the set of candidate
character windows.

We then apply Non-Maximum Suppression (NMS), sim-
ilar to other sliding window detection methods [13], to ad-
dress the issue of multiple overlapping detections for each
instance of a character. We select detections which have a
high confidence score, and do not overlap significantly with
any of the other stronger detections. We perform NMS after
the aspect ratio pruning because wide windows containing
many characters may suppress overlapping single character
windows, when they are weaker.

We perform both the pruning steps conservatively, and
only discard the obvious false detections. We believe that
this bottom-up approach alone cannot address all the is-
sues related to detecting characters. Hence, we introduce
lexicon-based top-down cues to discard the remaining false
positives. We also use these cues to recognize the word as
described in the following section.

3. Recognizing Words

The character detection step provides us with a large set
of windows potentially containing characters within them.
Our goal is to find the most likely word from this set of char-
acters. We formulate this problem in an energy minimiza-
tion framework, where the best energy solution represents
the ground truth word we aim to find.

3.1. The Word Model

Each detection window is represented by a random vari-
able Xi, which takes a label xi.1 Let n be the total number
of detection windows. Note that the set of random variables
includes windows representing not only true positive detec-
tions, but also many false positive detections, which must be
suppressed. We introduce a null (or void) label ε to account
for these false windows. Thus, xi ∈ Kε = K∪{ε}. The set
Kn

ε represents the set of all possible assignments of labels
to the random variables. An energy function E : Kn

ε → R,
maps any labelling to a real number E(·) called its energy
or cost. The function E(·) is commonly represented as a
sum of unary and pairwise terms as:

E(x) =
n∑

i=1

Ei(xi) +
∑
E

Eij(xi, xj), (2)

where x = {xi|i = 1, 2, . . . , n}, Ei(·) represents the unary
term, Eij(·, ·) is the pairwise term, and E represents the set
of pairs of interacting detection windows, which is deter-
mined by the structure of the underlying graphical model.

Graph construction. We order the windows based on
their horizontal location, and add one node each for every
window sequentially from left to right. The nodes are then
connected by edges. One could make a complete graph by
connecting each node to every other node. However, it is
not natural for a window on the extreme left to be related
to another window on the extreme right, as evident in Fig-
ure 4.2 Thus, we only connect windows with a significant
overlap between them or windows which are close to each

1Our model has similarities to that proposed in [10] for object detection,
but the challenges (e.g. inter- and intra- character confusions) are greatly
different from those in the object detection problem.

2We assume here that the windows have been pruned based on aspect
ratio of character windows. Without this pruning step, a window may con-
tain multiple characters and will perhaps require a more complete graph.



other. In the example in Figure 4, we show a few win-
dow samples and the edges between them. The intuition
behind connecting overlapping or close-proximity windows
is that they could represent either overlapping detections of
the same character or detections of two separate characters.
As we will see later, the edges are used to encode the lan-
guage model as top-down cues.

CRF energy. The unary term E(xi), which denotes the
cost of a node xi taking label cj �= ε, is defined as:

Ei(xi = cj) = 1 − p(cj |xi), (3)

where p(cj |xi) is the classifier confidence (e.g. SVM score)
of character class cj for node xi. For the null label ε,

Ei(xi = ε) = max
j

p(cj |xi) exp

(
− (μaj − ai)2

σ2
aj

)
, (4)

where ai is the aspect ratio of the window corresponding to
node xi, cj is character detected at node xi, and μaj and σaj

are the mean and the variance of aspect ratio of the charac-
ter detected, which is learnt from the training data, respec-
tively. For a true window, which has a relatively good SVM

score, and matches the average aspect ratio size, this cost
of assigning a null label is high. On the other hand, false
windows, which either have poor SVM scores or vary from
the average aspect ratio size or both will be more likely to
take the null label ε.

The pairwise term E(xi, xj) is used to encode the top-
down cues from the language model in a principled way.
The cost of two neighbouring nodes xi and xj taking labels
ci �= ε and cj �= ε respectively is given by:

Eij(xi, xj) = El
ij(xi, xj) + λo exp(−ψ(xi, xj)). (5)

Here, ψ(xi, xj) = (100 − Overlap(xi, xj))2, is a mea-
sure of the overlap percentage between the two windows
Xi and Xj . The function El

ij(xi, xj) denotes the lexi-
con prior.The parameter λo determines the overlap-based
penalty. Computation of the lexicon prior El

ij(·, ·) is dis-
cussed in Section 3.2. The pairwise cost (5) ensures that two
windows with sufficiently high overlap cannot take non-null
labels, i.e. at least one of them is likely to be a false window.
The costs involving the null label ε are computed as:

Eij(xi = ci, xj = ε) = λo exp(−ψ(xi, xj)). (6)

The pairwise cost Eij(xi = ε, xj = cj) is defined similarly.
Further, Eij(xi = ε, xj = ε) is uniformly set to zero.

Inference. Given these unary and pairwise terms, we
minimize the energy function (2). We use the sequential
tree-reweighted message passing (TRW-S) algorithm [18]

Figure 4: Summary of our approach. We first find a set of
potential character windows, shown at the top (only a few
are shown here for readability). We then build a random
field model on these detection windows by connecting them
with edges. The edge weights are computed based on the
characteristics of the two windows. Edges shown in green
indicate that the two windows it connects have a high prob-
ability of occurring together. Edges shown in red connect
two windows that are unlikely to be characters following
one another. A edge shown in red forces one of the two win-
dows to take the ε label, i.e. removes it from the candidate
character set. Based on these edges and the SVM scores for
each window, we infer the character classes of each window
as well the word, which is indicated by the green edge path.
(Best viewed in colour.)

because of its efficiency and accuracy on our recognition
problem. The TRW-S algorithm maximizes a concave lower
bound on the energy. It begins by considering a set of trees
from the random field, and computes probability distribu-
tions over each tree. These distributions are then used to
reweight the messages being passed during loopy BP [24] on
each tree. The algorithm terminates when the lower bound
cannot be increased further, or the maximum number of it-
erations has reached.

3.2. Computing the Lexicon Prior

We use a lexicon to compute the prior El
ij(xi, xj) in (5).

Such language models are frequently used in speech recog-
nition, machine translation, and to some extent in OCR sys-
tems [27]. We explore two types of lexicon priors for the
word recognition problem.

Bi-gram. Bi-gram based lexicon priors are learnt from
joint occurrences of characters in the lexicon. Character
pairs which never occur are highly penalized. Let P (ci, cj)
denote the probability of occurrence of a character pair
(ci, cj) in the lexicon. The pairwise cost is:

El
ij(xi = ci, xj = cj) = λl(1 − P (ci, cj)), (7)

where the parameter λl determines the penalty for a charac-
ter pair occurring in the lexicon.



Node-specific prior. When the lexicon increases in size,
the bi-gram model loses its effectiveness. It also fails to
capture the location-specific information of pairs of charac-
ters. As a toy example, consider a lexicon with only two
words CVPR and ICPR. The node-specific pairwise cost for
the character pair (P,R) to occur at the beginning of the word
is higher than for it to occur at the end of word. This useful
cue is ignored in the bi-gram prior model.

To overcome this, we divide each lexicon word into n
parts, where n is determined based on the number of nodes
in the graph and the spatial distance between nodes. We
then use only the first 1/n

th of the word for computing the
pairwise cost between initial nodes, similarly next 1/nth for
computing the cost between the next few nodes, and so on.
In other words, we do a region of interest (ROI) based search
in the lexicon. The ROI is determined based on the spatial
position of a detected window in the word, e.g. if two win-
dows are on the left most side then only the first couple
of characters of lexicons are considered for calculating the
pairwise term between windows.

The pairwise cost using this prior is given by:

El
ij(xi = ci, xj = cj) =

{
0 if (ci, cj) ∈ ROI,
λl otherwise.

(8)

We evaluate our approach with both these pairwise terms,
and find that the node-specific prior achieves better perfor-
mance.

4. Experiments

In this section we present a detailed evaluation of our
method. Given a word image extracted from a street scene
and a lexicon, our problem is to find all the characters, and
also to recognize the word as a whole. We evaluate various
components of the proposed approach to justify our choices.
We compare our results with two of the best performing
methods [29, 30] for this task.

4.1. Datasets

We used the Street View Text (SVT) [30]3 and the IC-
DAR 2003 robust word recognition [1] datasets in our ex-
periments. To maintain identical experimental settings to
those in [29], we use the lexica provided by them for these
two datasets.

SVT. The Street View Text (SVT)4 dataset contains im-
ages taken from Google Street View. As noted in [30], most
of the images come from business signage and exhibit a
high degree of variability in appearance and resolution. The
dataset is divided into SVT-SPOT and SVT-WORD, meant for

3http://vision.ucsd.edu/∼kai/svt
4Note that this dataset has been slightly updated since its original re-

lease in [30]. We use the updated version [29] in our experiments.

the tasks of locating words and recognizing words respec-
tively. Since, in our work, we focus on the word recognition
task, we used the SVT-WORD dataset, which contains 647
word images.

Our basic unit of recognition is a character, which needs
to be detected or localized before classification. A miss in
the localization will result in poorer word recognition. To
improve the robustness of the recognition architecture, we
need to quantitatively measure the accuracy of the charac-
ter detection module. For this purpose, we created ground
truth data for characters in the SVT-WORD dataset. Using
the ground truth at the character level we evaluated the per-
formance of the SVM classifier used for this task. Note that
no such evaluation has been reported on the SVT dataset as
yet. Our ground truth data set contains around 4000 char-
acters of 52 classes overall. We refer to this dataset as SVT-
CHAR.5

ICDAR 2003 Dataset. The ICDAR 2003 dataset was orig-
inally created for cropped character classification, full im-
age text detection, cropped and full image word recogni-
tion, and various other tasks in document analysis. We used
the part corresponding to cropped image word recognition
called Robust Word Recognition [1]. Similar to [29], we
ignore words with less than two characters or with non-
alphanumeric characters, which results in 829 words over-
all. For subsequent discussion we refer to this dataset as
ICDAR(50).

4.2. Character Detection

Sliding window based character detection is an impor-
tant component of our framework, as our random field
model is defined on the detections obtained. At every possi-
ble location of the sliding window, we test a character clas-
sifier. This provides a likelihood of the window containing
a certain character. The alphabet of characters recognized
consists of 26 lowercase and 26 uppercase letters, and 10
digits.

We evaluated various features for recognizing charac-
ters. We observed that the HOG feature [8] outperforms the
features reported in [9], which uses a bag-of-words model.
This is perhaps due to the lack of geometric information in
the model. We computed dense HOG features with a cell
size of 4 × 4 using 10 bins, after resizing each image to a
22×20 window. We learnt a 1-vs-all SVM classifier with an
RBF kernel using these features. We used the standard LIB-
SVM package [5] for training and testing the SVMs. For the
SVT-CHAR evaluation, we trained the model on the ICDAR

2003 dataset due to the relatively small size of SVT-CHAR

(∼ 4000 characters). We observed that the method using
HOG descriptors performs significantly better than others
with a classification accuracy of 61.86%.

5Available at http://cvit.iiit.ac.in/projects/SceneTextUnderstanding



Total characters in the ground truth 3796
True detection (true positive) 3707
Characters we missed (false negative) 89

Table 1: Evaluation of the performance of our sliding win-
dow approach. We use the intersection over union mea-
sure [1, 12] thresholded at 90% to determine whether a
detection has been retrieved or not. Note that most of the
true positives are detected. A few of them, such as the ones
shown in Figure 5 were missed.

We then performed sliding window based detection,
where we considered bounding boxes of varying sizes, at
many locations in the cropped word image. Each bound-
ing box is classified with a certain likelihood given by its
SVM score. We pruned some of the windows based on
their aspect ratio. We used the goodness score measure in
(1), and discarded all windows with a score less than 0.1.
Character specific NMS is done on the remaining bound-
ing boxes. This two step pruning is done to discard some
of the obvious errors, although making sure that almost all
the true positives are included at this stage. Table 1 sum-
marizes an evaluation of the quality of our sliding window
approach for the SVT-CHAR dataset. We computed the in-
tersection over union measure of a detected window com-
pared to the ground truth, similar to PASCAL VOC [12] and
ICDAR 2003 [1]. We used a threshold of 90% to determine
if a box has missed a character or not. Note that more than
97% of the characters are detected. Some of the typical fail-
ures are due to poor resolution of the images, which leads
to very weak SVM scores, as shown in Figure 5. In addition
to the detection rate, we also measured the performance of
this module in terms of precision-recall. We obtained an
mAP of 0.88 over all the characters, which indicates that
this approach provides reliable cues for other parts of our
framework.

4.3. Cropped Word Recognition

We use the detections obtained to build the CRF model
as discussed in Section 3.1. We add one node for every de-
tection window, and connect it to other windows based on
its spatial distance and overlap. Two nodes spatially distant
from each other are not connected directly. The unary cost
of taking a character label is determined by the SVM con-
fidence, and the pairwise costs are learnt from the lexicon.
We experiment with both bi-gram and node-specific lexicon
priors.

We choose the lexicon prior parameter in (7) and (8)
λl = 2, for all our experiments. The overlap penalty pa-
rameter in (5) and (6) is set to λo = 1, empirically for all
our experiments. The resulting energy function is optimized
using the TRW-S algorithm [18].

Figure 5: A few challenging character examples we missed
in the sliding window stage. These examples are very diffi-
cult even for a human. We observed that all these potential
character windows were missed due to poor SVM scores.

4.4. Results and Discussion

Similar to the evaluation scheme in [29], we use the in-
ferred result to retrieve the word with the smallest edit dis-
tance in the lexicon. We evaluated our methods on two
of the most challenging street scene text datasets, namely
SVT and ICDAR 2003. Other databases, such as the ones
used in [26, 31], mainly consist of “roughly fronto-parallel”
pictures of signs [31], or do not consider low resolution or
low contrast images [26]. This makes the images in these
datasets quite similar to those found in a traditional OCR

setting. Since our focus is to work with typical images from
a street scene, we used the most challenging datasets avail-
able publicly.

The best known results on the SVT and ICDAR datasets
are reported in [29], where the authors used a pictorial struc-
tures model for recognizing words. Under similar experi-
mental settings, we compare our results with this and other
methods in Table 2. We observe that our method outper-
forms [29] and the commercial OCR ABBYY [2].

We also study the effect of the two pairwise terms,
namely bi-gram and node-specific priors. We note that the
node-specific prior is superior to the bi-gram prior. As the
number of words in the lexicon increases, bi-gram probabil-
ity does not convey much information. Moreover, it fails to
capture cues such as, some character pairs occur more fre-
quently at the beginning of the word and very rarely towards
the end.

We show the qualitative performance of our method
in Figure 7. These examples demonstrate the benefits of
combining top-down (node-specific lexicon) and bottom-up
(character detection) cues in word recognition. It does have
failures however. Some of the failure cases are shown in the
last row in the figure. In our evaluation, we found the main
causes of such failures to be: (i) weak unary term; and (ii)
missing characters in the detection stage itself (Figure 5).

The increase in accuracy of more than 15% on the SVT-
WORD dataset and nearly 10% on the ICDAR 2003 dataset
can be attributed to the strengths of our model: (i) We per-
form better sliding window detection and get most of the
true positives. Note that we quantitatively measure our per-
formance of this stage and miss only 2% of the true win-
dows. (ii) We use the context (i.e. lexicon prior) in a more
principled way. (iii) We seamlessly integrate the bottom-up
and top-down clues in a CRF framework.



Figure 6: Bi-gram vs node-specific prior. The word inferred
using bi-gram prior is shown on the left (in the blue box)
and that inferred using node-specific prior is shown on the
right (in the yellow box) at the top of every image. The node-
specific prior shows a better performance over the bi-gram
prior as it captures relative occurrence of characters more
effectively. (Best viewed in colour.)

Discussion. Our method is inspired by the work of [29]
and [10], but we differ from them in many aspects as de-
tailed below. The method of [29] is a strongly top-down
approach, where each word in the lexicon is matched to a
given set of character windows, and the one with the lowest
score is the predicted word. This is prone to errors when
characters are missed or detected with low scores. In con-
trast, we build a model from the entire lexicon (top-down
cues), combine it with all the character detections (bottom-
up cues), which have low or high scores, and infer the word
with a joint inference scheme. This model, which uses both
top-down and bottom-up cues, provides us with a signifi-
cant improvement in accuracy. Furthermore, unlike the trie
based structure for storing lexicon in [29], our method is not
restricted by the size of the lexicon.

The structured label computed in [10] does not have any
semantic meaning, and simply states that image contains
certain objects. In our work, the inferred label represents
a word from the lexicon, which requires use of much more
complex context (top-down cues). It is not clear if [10] can
incorporate such constraints easily.

5. Conclusion

In summary, we proposed an effective method to recog-
nize scene text. Our model combines bottom-up cues from
character detections and top-down cues from lexica. We in-
fer the location of true characters and the word they rep-
resent as a whole jointly. We showed results on two of
the most challenging scene text databases, and improved
the latest results published at ICCV 2011 [29] significantly.
Our results show that scene text can be recognized with a
reasonably high accuracy in natural, unconstrained images.
This could help in building vision systems, which can solve
higher level semantic tasks, such as [15, 19].

Method SVT-WORD ICDAR(50)
PICT [30] 59.0* -

PLEX + ICDAR [29] 56 72
ABBYY [2] 35 56

Proposed (Bi-gram) 70.03 76.96
Proposed (Node-specific) 73.26 81.78

Table 2: Cropped Word Recognition Accuracy (in %): We
show a comparison of the proposed random field model to
the popular commercial OCR system ABBY, and PLEX pro-
posed in [29]. *Note that the dataset has been revised since
the original publication in [30], which makes that result not
comparable directly. However, given that our method per-
forms better than the improved version of [30], i.e. [29],
we expect this trend to hold. We improve the accuracy by
over 15% and 10% respectively on SVT-WORD and ICDAR

datasets.

Acknowledgements

This work is partly supported by the Ministry of Com-
munications and Information Technology, Government of
India, New Delhi. Karteek Alahari is partly supported by
the Quaero programme funded by the OSEO and the EIT
ICT Labs (activity 10863). We thank Armand Joulin for
helpful comments on the manuscript.

References

[1] ICDAR 2003 Robust word recognition dataset,
http://algoval.essex.ac.uk/icdar/RobustWord.html.

[2] ABBYY Finereader 9.0, http://www.abbyy.com.

[3] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Seg-
mentation and recognition using structure from motion point
clouds. In ECCV, volume 1, pages 44–57, 2008.

[4] C. Case, B. Suresh, A. Coates, and A. Y. Ng. Autonomous
sign reading for semantic mapping. In ICRA, 2011.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support
vector machines. ACM Trans. Intelligent Systems and Tech-
nology, 2011.

[6] X. Chen and A. L. Yuille. Detecting and reading text in nat-
ural scenes. In CVPR (2), pages 366–373, 2004.

[7] A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh,
T. Wang, D. J. Wu, and A. Y. Ng. Text detection and char-
acter recognition in scene images with unsupervised feature
learning. In ICDAR, pages 440–445, 2011.

[8] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005.

[9] T. E. de Campos, B. R. Babu, and M. Varma. Character
recognition in natural images. In VISAPP, 2009.

[10] C. Desai, D. Ramanan, and C. Fowlkes. Discriminative mod-
els for multi-class object layout. In ICCV, 2009.

[11] B. Epshtein, E. Ofek, and Y. Wexler. Detecting text in natural
scenes with stroke width transform. In CVPR, 2010.



Figure 7: Example word recognition results on challenging images from the SVT dataset [29] using the node-specific lexicon
prior. Our method handles many different fonts, distortions (e.g. CAPOGIRO in row 3). There are few failure cases however,
as shown in the bottom row. We found the main causes of such failures to be: (i) weak unary term; and (ii) missing characters
in the detection stage itself (see Figure 5). Some of these issues (e.g. CITY image in the bottom row) can be addressed by
modifying the sliding window procedure.

[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes (VOC)
challenge. IJCV, 88(2):303–338, 2010.

[13] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. PAMI, 32(9), 2010.

[14] S. Gould, T. Gao, and D. Koller. Region-based segmentation
and object detection. In NIPS, 2009.

[15] A. Gupta, Y. Verma, and C. V. Jawahar. Choosing linguistics
over vision to describe images. In AAAI, 2012.

[16] D. Hoiem, A. Efros, and M. Hebert. Closing the loop on
scene interpretation. In CVPR, 2008.

[17] T. Judd, K. Ehinger, F. Durand, and A. Torralba. Learning to
predict where humans look. In ICCV, 2009.

[18] V. Kolmogorov. Convergent tree-reweighted message pass-
ing for energy minimization. PAMI, 2006.

[19] G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. C. Berg,
and T. L. Berg. Baby Talk: Understanding and generating
simple image descriptions. In CVPR, 2011.

[20] L. Ladicky, P. Sturgess, K. Alahari, C. Russell, and P. H. S.
Torr. What, Where & How Many? Combining object detec-
tors and CRFs. In ECCV, 2010.

[21] J. Lafferty, A. McCallum, and F. Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and la-
belling sequence data. In ICML, pages 282–289, 2001.

[22] A. Levin and Y. Weiss. Learning to combine bottom-up and
top-down segmentation. IJCV, 81(1):105–118, 2009.

[23] L. Neumann and J. Matas. A method for text localization
and recognition in real-world images. In ACCV, 2010.

[24] J. Pearl. Probabilistic Reasoning in Intelligent Systems : Net-
works of Plausible Inference. Morgan Kauffman, 1988.

[25] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost
for image understanding: Multi-class object recognition and
segmentation by jointly modeling texture, layout, and con-
text. IJCV, 81(1):2–23, 2009.

[26] D. L. Smith, J. Field, and E. G. Learned-Miller. Enforc-
ing similarity constraints with integer programming for bet-
ter scene text recognition. In CVPR, 2011.

[27] R. Smith. Limits on the application of frequency-based lan-
guage models to OCR. In ICDAR, 2011.

[28] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. CVPR, 2001.

[29] K. Wang, B. Babenko, and S. Belongie. End-to-end scene
text recognition. In ICCV, 2011.

[30] K. Wang and S. Belongie. Word spotting in the wild. In
ECCV, pages 591–604, 2010.

[31] J. J. Weinman, E. G. Learned-Miller, and A. R. Hanson.
Scene text recognition using similarity and a lexicon with
sparse belief propagation. PAMI, 2009.


