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ABSTRACT

The separation of the lead vocals from the background accompani-
ment in audio recordings is a challenging task. Recently, an efficient
method called REPET (REpeating Pattern Extraction Technique) has
been proposed to extract the repeating background from the non-
repeating foreground. While effective on individual sections of a
song, REPET does not allow for variations in the background (e.g.
verse vs. chorus), and is thus limited to short excerpts only. We
overcome this limitation and generalize REPET to permit the pro-
cessing of complete musical tracks. The proposed algorithm tracks
the period of the repeating structure and computes local estimates
of the background pattern. Separation is performed by soft time-
frequency masking, based on the deviation between the current ob-
servation and the estimated background pattern. Evaluation on a
dataset of 14 complete tracks shows that this method can perform at
least as well as a recent competitive music/voice separation method,
while being computationally efficient.

Index Terms— Music/voice separation, repeating pattern, time-
frequency masking, adaptive algorithms

1. INTRODUCTION

This work focuses on separating the singing voice signal from its
musical background in audio excerpts. This is a special case of
separating out a human voice from structured background noise
(e.g. music, hammering, engine noise). This highly challenging task
has important practical applications, such as melody transcription
from musical mixtures (making music audio databases searchable
by sung melodies), removal of repetitive background noise for im-
proved speech recognition, automatic karaoke and, more generally,
active listening scenarios, that are defined as the ability for the user
to directly interact with the musical content of the tracks.

Current trends in audio source separation are based on a filtering
paradigm, in which the sources are recovered through the direct pro-
cessing of the mixtures. When considering Time-Frequency (TF)
representations, this filtering can be approximated as an element-
wise weighting of the TF representations (e.g. Short-Time Fourier
Transform) of the mixtures. When individual TF bins are assigned
weights of either 0 (e.g. background) or 1 (e.g. foreground), this is
known as binary TF masking [14]. In this case, the energy from each
TF bin is assigned to just one source (foreground or background).
On the other hand, allowing values between 0 and 1 permits to as-
sign energy proportionally to each source. This is known as a soft
weighting strategy [1, 2]. The point of such methods is to estimate a
TF mask to apply to the mixtures and separate sources.
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Typical music/voice separation methods focus on modeling ei-
ther the music signal, by generally training an accompaniment model
from the non-vocal segments [8, 12], or the vocal signal, by gener-
ally extracting the predominant pitch contour [10, 9], or both signals
via hybrid models [15, 3]. Most of those methods need to identify
the vocal segments beforehand, typically using audio features such
as the Mel-Frequency Cepstrum Coefficients (MFCC). Among those
methods, works such as [12, 3] model each source of interest as the
sum of locally stationary signals, characterized by constant normal-
ized power spectra and time-varying energy. The estimation of the
parameters of such models is done using tensor factorizations [5, 11]
and separation is then consistently performed through the use of an
adaptive Wiener-like filter [1, 2, 11].

Another path of research exploits the fact that a binary mask can
be understood as a classification problem where each TF bin is ei-
ther associated to the voice or to the music signal. If a model of
the voice is available, then TF bins can be classified as belonging to
the music if the corresponding observations are far from the model,
thus defining a binary mask. With this in mind, a recently proposed
technique called REPET (REpeating Pattern Extraction Technique)
focuses on modeling the accompaniment instead of the vocals [13].
REPET starts from the observation that many popular music record-
ings can be understood as a repeating musical background, over
which a voice signal is superimposed that does not exhibit any im-
mediate repeating structure. Based on this observation, a model for
the background signal can be computed, provided its period is cor-
rectly estimated. This technique proved to be highly effective for
excerpts with a relatively stable repeating background (e.g. 10 sec-
ond verse). For longer musical excerpts however, the musical back-
ground is likely to vary over time (e.g. verse followed by chorus),
limiting the length of excerpt that REPET can be applied to. Further-
more, the binary TF masking used in REPET leads to noise artifacts.

In this work, we extend REPET to the case where the back-
ground is locally periodic, thus allowing the processing of long mu-
sical signals. Variations in the repeating background (e.g. verse vs.
chorus) can then be handled without the need of a prior segmenta-
tion of the audio (e.g. verse/chorus/verse). We also present a soft-
masking strategy, where the TF mask is not binary anymore. Such an
extension of REPET involves three main challenges. First, it relies
on the estimation of the time-varying period of the repeating back-
ground. Second, it requires estimating the corresponding locally-
periodic musical signal. Third, using this estimate, it involves the
derivation of a TF mask to perform separation.

The article is organized as follows. First, we present the frame-
work we use for modeling the background signal in section 2, along
with the corresponding method for separation. In section 3, we fo-
cus on how to estimate the time-varying period of the background
and its power spectrogram. Finally, we present an evaluation of the
proposed method in section 4.



2. MODEL

2.1. Notations

Let {xn}n=1···N denote a discrete-time mixture signal of length N ,
which is the sum of two signals: the lead (voice) signal {vn}n=1···N
and the background signal {bn}n=1···N . Let us callF {x} the Short-
Time Fourier Transform (STFT) of x. Let X , V , and B ∈ RF×T

+

be the power spectrograms (defined as the squared magnitude of the
STFT) of x, v and b, respectively. F is the number of frequency
channels and T the number of time frames. In this study, we only
consider mono recordings, since the proposed technique can be ap-
plied separately on the left and right channels of stereo mixtures.

If the signals are modeled as locally stationary Gaussian pro-
cesses, it can be shown [1, 11] that an estimate b̂ of the background
is given as an adaptive Wiener-like filtering of the mixture, i.e.:

b̂ = F−1 {Wb · F {x}} (1)

where · stands for the component-wise multiplication and where
Wb is called a TF mask. Wb is such that for each TF bin (f, t),
Wb (f, t) ∈ [0 1] and can be understood as the probability that the
energy in bin (t, f) comes from source b. Likewise, an estimate v̂
for v is given as: v̂ = F−1 {(1−Wb) · F {x}}.

2.2. Repeating Patterns

The background signal b is assumed to be locally spectrally-periodic
with a typical repetition period ∈ [1s 5s]. We define a spectrally-
periodic signal of period T0 as a signal such that each frequency
channel of its power spectrogram is periodic of period T0

H
, where

H is the hop size used for the STFT. Similarly, a locally spectrally-
periodic signal b can be defined as a signal such that each frequency
channel of its power spectrogram B is locally periodic, as follows:

∀ (t, f) , ∀k ∈ [−K · · ·K] , B (f, t) = B

(
f, t+ k

T0(t)

H

)
(2)

where T0 (t) is the local spectral-period of the signal in seconds at
time t and K ∈ N defines the range of time frames on which T0 (t)
can be approximated as constant.

Note that although we assumed that the voice does not exhibit an
immediate repeating structure, it has nevertheless some periodicity,
but generally at the pitch level (� 1 s) and the chorus level (� 5 s).

2.3. Derivation of the TF Mask

Let us assume that an estimate B̂ of the power spectrogram of the
background is available. We will focus on its estimation in section
3.2. Given X and B̂ only, is it possible to derive a good TF mask
Wb? Obviously, not having any particular model for V prevents
a full rigorous probabilistic derivation of Wb|B̂ and this problem is
part of our current work. For now, we will hence focus on a heuristic
method that proves to give very satisfying results in practice.

Conceptually, if B̂ and X are very close for some TF bin
(f, t), the energy in that bin is most likely to come from the back-
ground. On the contrary, if they are very different and in particular
if X (f, t) � B̂ (f, t), then the probability is high that the energy
of this bin rather comes from the foreground signal (the voice). In
[13], X and B are compared through ρ (f, t) =

∣∣∣log X(f,t)

B̂(f,t)

∣∣∣ and

Wb (f, t) is set to 1 if ρ (f, t) stands below a given threshold called
tolerance. Otherwise, Wb (f, t) is set to 0, thus leading to a binary
mask. The rationale underlying this choice of ρ is that the perception

of sound is widely acknowledged to be related to log-spectral energy
distribution.

In this study, we will concentrate on another expression for Wb

based on a Gaussian radial basis function, that allows the mapping
of ρ to the interval [0 1]. This leads to a soft mask, which, unlike a
binary mask, helps to reduce noise artifacts.

Wb (f, t) = exp

−
(

logX (f, t)− log B̂ (f, t)
)2

2λ2

 (3)

where λ is called the tolerance and is a parameter of the algorithm.

3. ESTIMATION

3.1. Time-Varying Repeating Period

In [13], the background signal was assumed to be only spectrally-
periodic, i.e. with a fixed repeating period for all time frames. Here,
we have assumed the background signal b to be locally spectrally-
periodic, i.e. with a time-varying period T0(t). This generalization
of REPET allows us to deal with long recordings, where the repeat-
ing background is likely to vary over time (e.g. verse vs. chorus).

To model the repeating background b, we first need to track its
period T0(t). To do so, we compute the beat spectrogram, a two-
dimensional representation of the sound that reveals the rhythmic
variations over time, a concept originally introduced in [7]. Given
the power spectrogramX of the mixture, we calculate a power spec-
trogram for each of its frequency channels. This gives the modu-
lations of the energy for each of the frequency channels. The beat
spectrogram ΩX of the mixture is then defined as the average of the
power spectrograms of all the frequency channels of X , as follows1:

ΩX =
1

F

F∑
f=1

∣∣F2

(
X (f, .)

)∣∣2 (4)

where X (f, .) is the f th frequency channel of X whose sliding
mean has been removed andF2 is an STFT transform, with different
parameters than F (see section 4.2 for the numerical values).

The computation of the beat spectrogram is depicted in Fig. 1.

Fig. 1. Illustration of the computation of the beat spectrogram.

Given the beat spectrogram ΩX , any method to estimate a time-
varying prominent period can be used. Hence, we do not linger here
on the details of the algorithm we used, but only outline its main

1Note that a further development of the method may include different
spectral-periods for different frequency bands.



ideas2. The likelihood for each possible spectral-period and for each
time slot was computed using a weighted spectral sum. The spectral-
period is then obtained using a dynamic program that can be under-
stood as a smoothing of these likelihoods. Values of {T0 (t)}t=1···T
are then obtained for all time frames through interpolation.

3.2. Repeating Background

We assume the background signal b is locally spectrally-periodic so
that (2) holds. Furthermore, we assume its parameter K is known
and its local spectral-period T0 (t) has been computed for each time
frame t as presented in section 3.1. Let t0 (t) = T0(t)

H
where H is

the hop size of the STFT operator F .
In order to estimate B from X , we further assume that the lead

signal is sparse in the TF domain, i.e. only a small portion of its
TF representation contains values of a non-negligible magnitude, a
reasonable assumption for voice signals. Hence, there are only a
small amount of TF bins such that B strongly differs from X . Still,
for the TF bins where the lead signal is active, the difference be-
tween B and X becomes significant. Thus, for a TF bin (f, t), it is
likely that most k ∈ [−K · · ·K] obeyB (f, t) ≈ X (f, t+ kt0 (t))
while the others can be considered as outliers. from the perspec-
tive of estimating B (f, t). For these reasons, robust estimation
of B (f, t) can be performed by computing the median value of
[X (f, t−Kt0 (t))X (f, t− (K−1)t0 (t)) · · ·X (f, t+Kt0 (t))].
The median is indeed known to be less sensitive to outliers.

A further refinement that proved to improve performance is to
also assume that the background signal cannot have stronger energy
than the mixture for any TF bin. This assumption comes from the
fact that, given two independent processesB and V with zero means,
we have X ≈ B + V . Finally, the estimate B̂ of B is given as:

B0 (f, t) = median [X (f, t−Kt0 (t)) · · ·X (f, t+Kt0 (t))]

B̂ (f, t) = min (X (f, t) , B0 (f, t))

The TF mask Wb can then be computed using Eq. 3 and the
separation can be performed using Eq. 1. The whole process only
involves simple operations and can be very efficiently implemented.

4. EVALUATION

4.1. Dataset & Competitive Method

Recently, FitzGerald et al proposed the Multipass Median Filtering-
based Separation (MMFS) method, a rather simple and novel ap-
proach for music/voice separation. Their approach is based on a me-
dian filtering of the spectrogram at different frequency resolutions,
in such a way that the harmonic and percussive elements of the ac-
companiment can be smoothed out, leaving out the vocals [6]. To
evaluate their method, they fortunately found recordings released by
the pop band The Beach Boys, where some of the complete origi-
nal accompaniments and vocals were made available as split stereo
tracks3 and separated tracks4. After resynchronizing the accompani-
ments and vocals for the latter case, we created a total of 14 sources
in the form of split stereo wave files sampled at 44.1 kHz, with the
complete accompaniment and vocals on the left and right channels,
respectively. As done in [6], we then used those 14 stereo sources to
create three datasets of 14 mono mixtures, by mixing the channels at

2The Python code for this algorithm is freely available under a GPL li-
cense at http://www.telecom-paristech.fr/~liutkus.

3Good Vibrations: Thirty Years of The Beach Boys, 1993
4The Pet Sounds Sessions, 1997

three different voice-to-music ratios: -6 dB (music is louder), 0 dB
(original equivalent level), and 6 dB (voice is louder).

We decided to compare our extended version of REPET to the
best version of the MMFS algorithm (there are 4 [6]), first because
a dataset of complete real-world recordings was finally accessible
for a comparative study, and then because we thought it could be
interesting to compare two relatively simple and novel music/voice
separation approaches. Note that although we are claiming to con-
duct a comparative study, we are not using the exact same dataset
since first FitzGerald et al did not mention which tracks they used
for their experiments, and also because unlike them, we chose to
process the complete tracks without segmenting them, since our ex-
tended REPET can now handle longer audio recordings with varying
repeating background, and this without computational constraints.
Note also that we did not compare this extended version of REPET
to the original one introduced in [13] since it does not make sense to
apply the latter one on full tracks.

4.2. Parameters & Separation Measures

In the analysis stage, the STFT of each mixture was computed using
a window length of 40 ms with 80% of overlapping. The beat spec-
trogram was computed using a window length of 10 seconds with
75% of overlapping. In the separation stage, each mixture was then
processed by the REPET algorithm. The parameters λ and K were
fixed to 1.5 and 2, respectively. In the masking stage, we used both
a binary TF mask and the soft TF mask described in Eq. 3. As done
in [6], we also applied a high-pass at 100 Hz on the vocal estimates.

We used the BSS_EVAL toolbox provided by [4] to measure the
separation performance of our REPET algorithm. The toolbox pro-
poses a set of now widely adopted measures that intend to quan-
tify the quality of the separation between a source and its corre-
sponding estimate: Source-to-Distortion Ratio (SDR), Sources-to-
Interferences Ratio (SIR), and Sources-to-Artifacts Ratio (SAR). As
done in [6], we decided to measure SDR, SIR, and SAR on segments
of 45 seconds from the music and voice estimates. Higher values of
SDR, SIR, and SAR would imply better separation.

4.3. Results & Statistical Analysis

First, we compared the results of REPET with binary mask vs. soft
mask, and without high-pass vs. with high-pass. A (non-parametric)
Kruskal-Wallis one-way analysis of variance showed that using a
high-pass at 100 Hz on the voice estimates gave overall statistically
better results, except for the voice SAR. Furthermore, using a soft
mask gave overall slightly better results, except for the voice SIR.
The improvement was however statistically not significant, except
for the voice SAR. We nevertheless believe that the estimates sound
perceptually better when using a soft mask instead of a binary mask,
therefore we decided to show the results only for the soft mask.

Since FitzGerald et al did not mention which tracks they used
and only provided mean values, we could not conduct a statisti-
cal analysis to compare the results. We can however compare their
means with our means and standard deviations, in the form of error
bars. Thus, Fig. 2 and 3 show the average SDR, SIR, and SAR for
the music and the voice estimates, respectively, at voice-to-music ra-
tios of -6, 0, and 6 dB, without and with High-Pass at 100 Hz. The
means and standard deviations of REPET are represented by the er-
ror bars and the means of MMFS are represented by the crosses.

In Fig. 2, we can see that for the music estimate, REPET has
overall a lower SAR, but a higher SIR, and a similar SDR. This could
mean that REPET is better for removing the vocal “interferences”



Fig. 2. SDR, SIR, and SAR of the music estimates, at voice-to-music
mixing ratios of -6 dB, 0 dB, and 6 dB, without and with High-Pass
at 100 Hz. The error bars represent the means (short horizontal lines
in the middle) plus/minus standard deviations (long horizontal lines
on each side) of REPET, while the crosses represent the means of
the best MMFS. Higher values mean better separation.

Fig. 3. SDR, SIR, and SAR of the voice estimates. (see Fig. 2)

from the accompaniment, at the price of introducing separation arti-
facts. In Fig. 3, we can see that for the voice estimate, REPET has
overall worse results when the voice is softer, but better results when
the voice is louder. This could mean that REPET is better at extract-
ing the foreground outliers (vocals) from the repeating background
(accompaniment) when there are larger in number.

The average computation time for our music/voice separation
system over all the mixtures was 1.1830 s for 1 s of mixture, when
implemented in Python on a PC with a dual-core processor and 8GB
of RAM. As we can see, this extended REPET performs overall at
least as well as a recent competitive music/voice separation method,
but on complete recordings, while being computationally efficient.

5. CONCLUSION

In this study, we have presented an extension of the REPET al-
gorithm for music/voice separation that allows processing of com-
plete musical excerpts. The method is characterized by the assump-
tion that the musical background exhibits local spectral-periodicity,
which proved to be adequate for many kinds of musical tracks. Drop-
ping absolute periodicity as was done in previous work permits to in-

crease the expressive power of the model while remaining computa-
tionally tractable. Indeed, unlike other separation methods, REPET
is only based on self-similarity. The algorithm is simple, fast, blind,
and therefore completely and easily automatable.

Future work will include a more thorough probabilistic model-
ing and the ability to simultaneously separate several repeating pat-
terns. Introducing dynamic features in source separation allows tak-
ing intuitive musicological knowledge into account and further re-
finements of the model may permit the user to manually specify the
structure of the track to process in order to facilitate separation.
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