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ABSTRACT

Discrete-time Volterra modeling is a central topic in many appli-

cation areas and a large class of nonlinear systems can be modeled

using high-order Volterra series. The problem with Volterra series

is that the number of parameters grows very rapidly with the or-

der of the nonlinearity and the memory in the system. In order

to efficiently implement this model, kernel eigen-decomposition

can be used in the context of a Parallel-Cascade realization of a

Volterra system. So, using the multilinear SVD (HOSVD) for de-

composing high-order Volterra kernels seems natural. In this pa-

per, we propose to drastically reduce the computational cost of the

HOSVD by (1) considering the symmetrized Volterra kernel and

(2) exploiting the column-redundancy of the associated mode by

using an oblique unfolding of the Volterra kernel. Keeping in mind

that the complexity of the full HOSVD for a cubic (I × I × I) un-

structured Volterra kernel needs 12I4 flops, our solution allows

reducing the complexity to 2I4 flops, which leads to a gain equal

to six for a sufficiently large size I .
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1. INTRODUCTION

Specific applications that need nonlinear structures are encoun-

tered in many different areas, in particular in mobile communi-

cation, image processing, in geophysical and biomedical signal

processing. Volterra series [1] can be used to represent a broad

class of nonlinearities. There exists a plethora of identification

techniques adapted to the Volterra model (see [2–5]). But the

main drawback is the huge number of parameters needed to char-

acterize the Volterra kernel. There are different ways to reduce

the parametric complexity of Volterra models and a major chal-

lenge is to decompose the Volterra kernel efficiently. A first ap-

proach is to expand this kernel using orthonormal basis functions

like Laguerre functions. Another approach consists in represent-

ing the Volterra model in a parallel-cascade form resulting from

the singular value decomposition of an unfolded matrix represen-

tation of the kernel. In this class of methods, we can find two

families: the matrix-based approach [6] and the tensor-based ap-

proaches [7,8]. In the second family, tensor-based decompositions

are used as for instance the PARAFAC-Volterra [8] and the multi-

linear SVD (HOSVD) [7, 9]. More precisely, we extend the work

initiated in references [7,8] by exploiting the column-redundancies

existing in the mode of symmetric or symmetrized Volterra ker-

nels [10]. This permits to strongly reduce the computational cost

of the parallel-cascade realization (PCR) of the Volterra model.
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2. VOLTERRA MODELS AND EIGEN DYNAMIC MODES

(EDM)

2.1. Definition of the model

Volterra series constitute a model for systems which yield gener-

alized Taylor series expansions. The input/output relationship for

a discrete-time time-invariant nonlinear causal system can be ex-

pressed as

y(n) =
M∑

m=1

ym(n) =
M∑

m=1

〈H∗
m, X(n)〉 (1)

where ∗ denotes complex conjugation, y(n) is the system’s output

for the n-th discrete observation, M is the order of the Volterra

model and the nonlinearity degree, 〈., .〉 stands for the inner prod-

uct. The data tensor for the n-th observation is given by X(n) =
x(n)◦ . . .◦x(n) where ◦ stands for the outer product, and x(n) =
[x(n) x(n − 1) . . . x(n − I + 1)]T in which T stands for matrix

transposition. In model (1), the (I×. . .×I) tensor Hm is called the

m-dimensional Volterra kernel and describes the dynamics of the

system. I is the memory length of the m-th order homogeneous

term ym(n). Expanding the inner product, we obtain

〈H∗
m, X(n)〉 =

I−1∑

k1,...,km=0

[Hm]k1...km [X(n)]k1...km

=

I−1∑

k1,...,km=0

[Hm]k1...kmx(n − k1) . . . x(n − km)

which represents a multidimensional convolution of the input sig-

nal x(n) with m-th order Volterra kernel. When M = 3, the

above model is called a cubic Volterra model. In the sequel, we

often consider this case but the presented results can be straight-

forwardly generalized to M > 3.

2.2. Multilinear SVD (HOSVD) for cubic Volterra models

2.2.1. Definition of the HOSVD

Every complex (I×I×I)-tensor H3 can be written as the product

[9]

H3 = Q ×1 U1 ×2 U2 ×3 U3, (2)

in which ×m denotes the m-mode product [9], U1, U2 and U3

are unitary matrices and Q is an all-orthogonal and ordered com-

plex tensor. This decomposition is a generalization of the matrix

SVD because the diagonality of the matrix containing the singular



values, in the matrix case, is a special case of all-orthogonality.

Also, the HOSVD of a second-order tensor (matrix) yields the ma-

trix SVD, up to trivial indeterminacies. For the third-order tensor

H3, the I × I2 unfolded matrix representations can be obtained as

[H1]k1,k3I+k2 = [H3]k1k2k3 ,

[H2]k2,k3I+k1 = [H3]k1k2k3 ,

[H3]k3,k1I+k2 = [H3]k1k2k3 .

An alternative (but equivalent) definition with respect to the

k-th frontal slice, denoted by Hk3 = [H3]:,:,k3 , is

H1 = unfold1{H3} =
[
H0 . . . HI−1

]
,

H2 = unfold2{H3} =
[
H

T
0 . . . H

T
I−1

]
,

H3 = unfold3{H3} =
[
vec

(
H

T
0

)
. . . vec

(
H

T
I−1

)]T

where vec(.) creates a I2×1 vector from a I×I matrix by stacking

the column vectors of this matrix below one another. For a general

definition of unfolded matrices in case of higher dimensions, the

interested reader can see [9] for instance. The matrix of m-mode

singular vectors, Um, can be found as the matrix of left singular

vectors of the unfolded matrix representation Hm.

Based on the unitary matrices U1, U2 and U3, the core tensor

is given by

Q = H3 ×1 U
H
1 ×2 U

H
2 ×3 U

H
3 (3)

where H denotes the conjugate transpose of a matrix.

2.2.2. Complexity in flops

The computational costs presented in this paper are related to the

flop (floating point operation) count. For example, a dot product

of I-dimensional vectors approximately involves 2I flops (I mul-

tiplications plus I−1 additions). Using the GR-SVD method [11],

the complexity of the full HOSVD of a (I × I × I)-tensor is eval-

uated to 12I4 flops [10].

2.3. Eigen dynamic modes (EDM) and Parallel-Cascade real-

ization

Plugging the HOSVD given in (2) into the model (1), we obtain

y3(n) =

I−1∑

k1,k2,k3=0

qk1k2k3 wk1(n)wk2(n)wk3(n)
︸ ︷︷ ︸

yk1k2k3
(n)

in which qk1k2k3 = [Q]k1k2k3 , wkm(n) = 〈u∗
km

,x(n)〉 = u
T
km

x(n)
where ukm = [Um]km is the km-th column of matrix Um. So,

according to this expression a PCR of the Volterra model is ob-

tained as the parallelization and sum of the following block dia-

gram:

u
T
k1

x(n)

wk1
(n)

$$II
II

II
II

II
I

x(n) // uT
k2

x(n)
wk2

(n)
//�� ��

�� ��× // yk1k2k3(n)

// uT
k3

x(n)

wk3
(n)

::uuuuuuuuuuu

qk1k2k3

OO

3. FAST HOSVD FOR THE CUBIC VOLTERRA KERNEL

Our method is based on the exploitation of the symmetry of the

Volterra kernel. A kernel is said to be symmetric if the indices can

be interchanged without affecting its value. More precisely, a m-th

order tensor S which is unchanged by any permutation π is called a

symmetric tensor: ∀k1, . . . , km ∈ {0, . . . , I−1}, [S]kπ(1),...,kπ(m)
=

[S]k1...km . In practice, we have two situations explained in the

next section.

3.1. On the symmetry for the Volterra kernel

3.1.1. Example of a symmetric kernel

The kernel of the Volterra model associated with the Wiener-Hammer-

stein model is already symmetric. Specifically, this model is formed

of a polynomial defined by the coefficients {c1, . . . , cm}, enclosed

between two linear filters of impulse responses r(.) and g(.), and

memories Mr and Mg respectively. The associated Volterra kernel

has been derived in [12]:

[Hm]k1,...,km = cm

Mg−1
∑

i=0

g(i)
m∏

u=1

r(ku − i),

where k1, . . . , km ∈ {0, . . . , Mv} and Mv = Mr + Mg − 1 is

the memory of the nonlinear plant, which is assumed to be known.

If Mr = 1, a Hammerstein model is selected whereas Mg = 1
corresponds to a Wiener model. It is clear that Hm is a symmetric

tensor since r(k1 − i)r(k2 − i) . . . r(km − i) is invariant under

permutation.

3.1.2. Existence of a symmetrized kernel

If the kernel is general in the sense that there is no symmetric re-

lations between its entries, there always exists an associated sym-

metrized kernel computed according to

[Sm]k1...km =
α

m!

∑

π∈P

[Hm]kπ(1)...kπ(m)
(4)

where ! stands for the factorial notation, ie., m! = m(m−1)...2.1,

and P is the permutation set of cardinal m!/α with α = n1! . . . nr!,
where r is the number of distinct values in the set {k1, . . . , km}
and n1 . . . nr is the occurrence of each index value. It follows that

for any tensor X(n), 〈H∗
m, X(n)〉 = 〈S∗

m, X(n)〉. The complexity

of this operation is (1 + m!/α)Im flops.

3.2. Orthogonal tensor decomposition for a symmetric tensor

In the sequel, we consider the third-order Volterra model (M = 3)

but the proposed method can be easily extended to higher orders.

In the following developments, we no longer mention index m in

order to simplify the notations.

3.2.1. Multilinear SVD (HOSVD) for symmetric tensors

As a special case of the general definition of the HOSVD given in

section 2.2.1, every complex symmetric (I × I × I)-tensor S can

be written as the product:

S = Q ×1 U ×2 U ×3 U, (5)

in which U is an unitary matrix and Q is an all-orthogonal and

ordered complex tensor.



3.2.2. Unfolding of a third-order symmetrized/symmetric tensor

The three modes of a third-order symmetric tensor are all equal

and are given by

S = unfold1{S} = unfold2{S} = unfold3{S}. (6)

Thus, S is a fat I × I2 matrix (more columns than rows) and,

as we show in the next section, it is column redundant [10].

3.3. Column-redundancy of the mode for a symmetrized or

symmetric tensor

3.3.1. Definition of the compressed mode

Let us begin by an example. Let H be a 2×2×2 tensor defined as

−1 0

4

����
2

����

5 7

−9

����

−2

����

.

The modes (unfolded matrices) are given by

H1 = unfold1{H} =

[
4 2 −1 0
−9 −2 5 7

]

,

H2 = unfold2{H} =

[
4 −9 −1 5
2 −2 0 7

]

,

H3 = unfold3{H} =

[
4 2 −9 −2
−1 0 5 7

]

.

Note that tensor H has no particular structure. This is also

true for the modes. Now, compute the symmetrized associated ten-

sor S defined according to (4) where the cardinal of the permuta-

tion group is 3!/(1!2!) = 3 according to

− 8
3 1

4

�
��

− 8
3

�
��

1 7

− 8
3

��
�

1

����

.

Then, its single mode is given by

S =

[
4 − 8

3
− 8

3
1

− 8
3

1 1 7

]

. (7)

Let us now consider the general case of symmetric tensors of

arbitrary dimension. The mode associated to a symmetric tensor

admits an axial blockwise symmetry [10] and thus S is column

redundant. This is a consequence of the symmetry of tensor S.

Specifically, some columns in S are repeated twice.

Let S
′ △
= SJ define the I × J compressed mode where J is

a selection matrix which cancels the column-redundancy in mode

S (symbol
△
= stands for definition). The number of columns of the

compressed mode is now reduced to

J
△
=

(I + 1)I

2
< I2. (8)

The derivation of the selection matrix is not straightforward

for any size I but a systematic computation of the compressed

mode can be obtained following an oblique unfolding, denoted by

o-unfold(.), of tensor S, described in Fig. 1, according to

S
′ = o-unfold(S) =

[
T0 . . . TI−1

]
(9)

where [Tk3 ]k1,k2 = [S]k1,k2,k3+k2 (∀i ∈ {0, . . . , I − 1}, the

dimensions of Ti are I × (I − i)).

3.3.2. Weighted compressed mode

To compensate the missing columns in the compressed mode, we

introduce a diagonal matrix

D = diag{d0, . . . , dJ−1} (10)

which takes the redundancy of each column in the mode into ac-

count. The weighting factors are given by

dk =

{
1 if 0 ≤ k < I,
2 if I ≤ k < J.

(11)

This means that if the k-th column is repeated twice then dk =
2. In case of no repetition, dk = 1. We call matrix S

′
D

1/2 the

weighted compressed mode.

Let us comeback to the example. Reorganize the columns of

the mode according to

S
(π) =

[
4 1 − 8

3
− 8

3

− 8
3

7 1 1

]

. (12)

where (π) means that the columns of S have been permuted. It is

clear that the last columns are repeated. To mitigate this problem,

consider the oblique unfolding introduced in (9) and compute the

compressed mode S
′ with J = 3 according to

S
′ = o-unfold(S) =

[
T0 T1

]
(13)

where T0 =

[
4 1
− 8

3
7

]

and T1 =

[
− 8

3
1

]

. As expected, the re-

peated columns are removed and the remaining columns are scaled

according to the weighting matrix given by D = diag{1, 1, 2}.

3.3.3. SVD of the compressed mode

The SVD of the compressed mode is given by

S
′
D

1/2 = UGV
H

(14)

where G is a diagonal matrix with non-negative coefficients and U

and V are unitary matrices. Consequently, the sample covariance

of the mode S verifies

R
△
= SS

H = S
′
D

1/2(S′
D

1/2)H = UG
2
U

H . (15)

This means that the mode S and the weighted compressed

mode S
′
D

1/2 share the same unitary basis1
U. In this way, the

1The detailed proof can be found in [10].



cost of the HOSVD is reduced to that of the SVD of S
′
D

1/2. Us-

ing the GR-SVD method [11], the complexity of the computation

of the SVD of an I × J matrix with J ≫ I needs 4JI2 flops.

For large I , we have 4JI2 ≈ 2I4. In particular, it can be noted

that the compression and weighting of the modes lead to a com-

plexity approximately 6 times as low as that of the full HOSVD

computation, and twice as low as that the HOSVD for symmetric

tensors. To illustrate this result, the number of flops is plotted in

Fig. 2 with respect to the size of the kernel. In addition, the dif-

ferent complexities are summarized in Table 1. Remark that the

computational cost of the symmetrization of the Volterra kernel is

dominated by the computational cost of the SVD.

Y

I

-

?

I

I

-T0

T1
-

TI−1
-

Fig. 1. Oblique unfolding of tensor S

Table 1. Cost of the HOSVD

Operation Cost per iteration

HOSVD 12I4

Symmetrization (optional) 7I3

HOSVD (symmetric tensor) 4I4

HOSVD (symmetric + compressed mode) 2I4

4. CONCLUSION

Reducing the number of parameters toward a parallel-cascade real-

ization of a high-order Volterra kernel is a hot topic. In this paper,

we propose a fast computation of the multilinear SVD (HOSVD)

which fully exploits the redundancies of symmetric/symmetrized

Volterra kernels. First, for such kernels and without loss of gen-

erality, the HOSVD needs the computation of a single SVD of its

unique mode (unfolded matrix). This step leads to reduce the com-

putational cost by a factor three in the case of a third-order tensor.

Next, a second improvement, which is the main contribution of the

paper, is that this mode is column redundant, meaning that some
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Fig. 2. Number of flops with respect to the Kernel size

columns are repeated twice. Consequently, we present a technique

for deriving an SVD of a mode which has less columns than the

initial mode since the repeated columns are removed. Finally, we

show that this compressed mode, before convenient scaling, is

obtained by an oblique unfolding of the symmetric/symmetrized

Volterra kernel. This last point allows decreasing the computa-

tional cost by a factor two and thus by a final factor equal to six

with respect to the direct computation of the HOSVD for the initial

Volterra kernel. For the interested reader, further improvements for

efficiently computing the HOSVD of structured tensors are pre-

sented in [10].
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